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Straggling of moderately relativistic electrons 

J B EHRMAN 
Department of Applied Mathematics, University of Western Ontario, London, Ontario, 
Canada 

MS received 17 January 1972, in revised form 26 April 1972 

Abstract. A simple analytical model for computing range-energy straggling of moderately 
relativistic electrons is set up. Both inelastic scattering and bremsstrahlung are considered 
as sources of straggling. The model gives overestimates for radiative straggling, but it is 
indicated how this overestimation may be removed. The simple (overestimating) model is 
used to compute range straggling for electrons up to kinetic energies of 4 MeV in uranium 
and up to 30 MeV in aluminium. The occurrence ofthe infinities in Eyges’radiativestraggling 
treatment are explained and removed. The results justify the neglect of straggling in electron 
transport when applied to photon production, as done by Brown, Ogilvie, Wittry, Kyser. 
Ehrman, dePackh, and others. 

1. Introduction 

This is the first of two papers dealing with the range of validity of the description of 
electron transport in matter by a single partial differential equation for the electron flux. 
This study was motivated by interest in the photon spectrum emerging from a layer of 
material bombarded by electrons of moderately relativistic energies. Since in the in- 
tended applications, a substantial photon flux emerging from the layer (in the forward 
direction, ie from the face which is not bombarded by the primary electrons) is desirable, 
the layer thickness considered was large compared to the transport mean free path i of 
the primary electrons, but small compared to the electron range. That is, the layer is of 
intermediate thickness, of the order of magnitude of a primary electron random walk 
radius in a Fermi-age theory for electrons (Bethe et a1 1938, Meister 1958), which is about 
the geometric mean of transport mean free path and range. 

Numerous approaches to the electron transport problem already exist. There are 
analytical methods, such as the various multiple scattering theories (see Zerby and 
Keller 1967 for a complete list of references) but these are of limited applicability at 
‘intermediate’ thicknesses, where path lengths are larger than A, but small enough so 
that boundary conditions are important. More appropriate at intermediate thicknesses 
are the Fermi-age theory or diffusion theory of Bethe et a1 (1938) and of Meister (1958), 
and the more refined Bethe et a1 (1938) transport equation which has been used by 
Brown (1965), Brown and Ogilvie (1966), Brown et al (1969) and Ehrman (1969 U S  
Naval Research Laboratory, Radiation Project Progress Report no 16 unpublished). 
(There has been a good deal of confusion in the literature between the approximation 
involved in the diffusion or age equation of 0 4 of Bethe et al (1938) and the transport 
equation of 4 2 of Bethe et al (1938). Only the transport equation of 0 2 will be referred 
to as the BRS equation here. The approximations involved are quite different, and the dif- 
ferences are explained in detail in the second paper of this series.) There is also the 
moment method of Spencer (1955, 1959), which treats the scattering of electrons more 
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accurately than the BRS equation, but which becomes clumsy when applied with finite 
boundaries, rather than to an infinite medium. Finally, there are numerical methods 
such as Monte Carlo methods, invariant embedding, and other complex geometry 
methods. (In addition to the paper by Birkhoff (1958), the reader is referred to the 
more recent review paper of Zerby and Keller (1967) for an overall view of the theoretical 
and experimental situation.) 

The age theory, the BRS transport equation, and the Spencer moment method all 
involve a continuous slowing down model for electrons, that is, it is assumed that the 
kinetic energy of an electron is a function only of its primary energy and of the path 
length traversed since entering the material. The Monte Carlo and the complex geometry 
methods do not make this assumption of negligible straggling, and can therefore be 
used where this assumption breaks down. It breaks down in inhomogeneous material, 
where not only the path length but the whole path history is important ; it also breaks 
down in homogeneous material at very deep penetrations, such as shielding problems, 
where the spectrum is composed predominantly of ‘atypical’ particles; and it breaks 
down at highly relativistic energies where the bremsstrahlungradiative straggling becomes 
important. 

The object of this paper is to show that for moderately relativistic electrons ( <4 MeV 
in uranium, < 30 MeV in aluminium), the straggling due to inelastic scattering and due to 
bremsstrahlung is not a large effect, and to estimate it quantitatively. Since the final use 
to be made of these results is for photon production, and since it has been shown by 
Spencer and Fano (1954) that secondary electrons are unimportant except for the very 
soft parts of the electron spectrum (10 % correction if energy = 16 % of primary energy ; 
factor of 2 correction if energy = 4 %  of primary energy) which contribute negligibly 
to photon production, the model presented here does not take secondary electrons 
produced by inelastic scattering into account. We also do not consider the secondary 
electrons produced by photons, that is, pair production electrons, Compton electrons, 
and photoelectrons. 

Unlike the work of Eyges (1949,1950) and of Blunck and Westphal(1951), the present 
treatment of radiative straggling is not limited to small penetration, that is, to path 
lengths small compared to the average range; nor is any attempt made to expand func- 
tions in powers of the path length x, since x = 0 turns out to be a branch point for the 
various moments of the probability distribution. This attempt to expand in Taylor 
series about what is really a branch point accounts for the infinite term encountered in 
Eyges (1949). 

Unlike Spencer and Fano (1954), we consider correlations between energy and path 
length, so as to determine range straggling, rather than only the energy flux spectrum of 
electrons as they slow down. But we use much rougher approximations for the various 
cross sections involved, so that the overall results can be obtained in a reasonably simple 
analytical form. Our method can be applied to more accurate cross sections, and the 
results worked out numerically, but for an estimate of the error of the continuous slowing 
down model applied to photon production cited above, an analytical formula which, if 
anything, somewhat overestimates the radiative straggling, is adequate. 

We thus derive an estimate for the error in range (and photon production)for electrons 
in (infinite) materials of various 2 for a wide range of primary kinetic energies. This 
defines the range of validity of the continuous slowing down model as used in the age 
theory, the BRS transport equation, and the Spencer moment method, provided that the 
material is homogeneous, and the penetration is not so deep that only atypical electrons 
are important and a few moments of distributions are unimportant. By this, we mean 
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that while path lengths comparable to the average range are properly treated, path lengths 
larger than the average range are not. The thickness of the layer considered must there- 
fore be somewhat less than the average path length, but of the order of the age-theory 
random walk radius or a few times that, if it is desired to compute electron transmission 
through the layer. Note that in Eyges (1949, 1950) and Blunck and Westphal(l951) the 
path lengths considered are small compared to the average range. This is not the case 
here, and electrons which lose most or all of their energy can be treated. 

In the second paper, we delimit further the range of validity of the BRS transport 
equation, which defines all of its higher scattering moments as simple multiples of the 
first, instead of introducing many independent scattering moments from a carefully 
fitted elastic scattering cross section, or from experiment, as does the Spencer method. 
In that paper, the effect of the finite thickness of the layer will be introduced indirectly 
into the model for comparison of BRS and Spencer through an effective escape probability 
of bremsstrahlung photons from the layer. In the present paper, we consider the distribu- 
tion of electrons in kinetic energy and path length, but no geometrical parameters such 
as finite layer thickness. Needless to say, the computer programs of Brown (1965), 
Brown and Ogilvie (1966), Ehrman and dePackh (1969, unpublished computer program 
‘Electrex’) for electron transport and photon production in homogeneous layers of 
intermediate thickness treat boundary condition effects in detail. The present two papers 
serve to establish the conditions under which the electron transport differential equation 
program, with boundary conditions, is valid, and to give an estimate of the error involved 
in it. These error estimates will be discussed in detail in the second paper. 

In 8 2 of this paper, we estimate the straggling due to inelastic scattering, using the 
relativistic Mnrller scattering formula for free electrons. In $ 3 ,  we set up our model for 
the computation of radiative straggling, and show where it resembles and where it 
differs from that of Eyges. In 6 4, we compute straggling parameters for certain brems- 
strahlung spectra. In $5, we relate our model to the computation of the differential 
range spectrum as a function of energy as done by Spencer and Fano. Section 6 sum- 
marizes the conclusions of the preceding sections. 

2. Straggling due to inelastic scattering 

For the continuous slowing down model of energy loss by moderately relativistic 
electrons in matter, we shall make use of the equation 

where y is the total energy of an electron in units of mc’, s is the path length, N is the 
number of atoms per unit volume, r,, is the so called classical electron radius e2 /mc2 ,  and 
L ,  and 4 are defined below. The first term on the righthand side represents the loss of 
energy due to inelastic scattering by atomic electrons (both nonionizing and ionizing), 
while the second represents the energy loss due to bremsstrahlung. The ‘logarithmic’ 
factor L2 is a slowly varying function of y given by (Bethe and Ashkin 1953, p 254) 

1.636 1.818 
Y f 

- 0 . 5 6 8 - - - + 7  

where I is an average excitation potential of the atom, approximately (9.5)Z eV. With 
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this expression for L z  , - dy/ds of equation (1) represents the best value for average energy 
loss per unit length. The factor $(y, Z) in the second term of equation (1) is in the 
nonrelativistic Born approximation limit, and becomes 

4 ln(183Z- ' I 3 ) + $  (3) 
(see Heitler 1954, p 253) in the ultrarelativistic Born approximation limit. For y < 5, 
the empirical formula 

$ = (6.29 + 0.039 1Z) + (2.17 - 0.0170Z) ln(y - 1) + (0.661 - 0.0104Z) lnz(y - 1) (4) 
fits experimental data on aluminium and gold (Koch and Motz 1959) fairly well. The 
factor Z(Z + 1) in equation (1) becomes Z2 if bremsstrahlung due to atomic electrons is 
neglected. The neglect is an underestimate of bremsstrahlung, but replacing 2' by 
Z(Z + 1) is somewhat of an overestimate. 

We are primarily concerned here with values of y, Z low enough so that the second 
term on the righthand side of equation (1) is less than the first. The ratio of these two 
terms is subsequently called q. For the time being, we neglect the second term entirely, 
and determine the straggling due to inelastic scattering only. (The contribution of 
scattering of an electron by the atom as a whole to the straggling is neglected.) 

Consider electrons of kinetic energy T, and define P(T)  as the derivative of the 
variance of energy loss with respect to path length for these electrons. Then (Evans 1955, 
P 661) 

do 

where do(Q)/dQ is the cross section for scattering of the incident electron by an atomic 
electron per unit range of energy loss Q. The upper limit on the integral in equation (5) 
is 3Trather than T, since the two electrons are identical particles, and the one emerging 
with the larger kinetic energy will be called the scattered electron. To compute the 
derivative of average energy loss with respect to path length, the factor Q2 in equation (5) 
is replaced by Q. Then, the complicated behaviour of do/dQ for Q so small that the bind- 
ing ofsome or all ofthe atomic electrons is important must be taken into account. But the 
Q2 in equation (5) makes this unnecessary (straggling is caused by a few large energy 
losses rather than by many small ones), and the Marller free electron expression may be 
used for da/dQ, that is (Evans 1955, p 577, equation (2.12)) 

_ -  

foro < q < f 
where 

q = -  Q 
T '  

Carrying out the integration in equation (5) yields 
Z 2 

P = 2nNZe4 { 0.4206 + 0.2348 ( y)  }. 
Y+l 

The variance in total path length or range for a given kinetic energy To 

( A ( S 2 ) ) T 0  = ( ( m T o  - 
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is given by 

For dya,/ds, insert the first term on the righthand side of equation (l), and assume 
L2(y) = L2(y0), since L2(y) is an insensitive function of 7 ,  especially if 7 -  1 is not too 
small. Then 

where 

J ( y )  3 0.32769(y2- l)-&-- 1)-0.60631 lny+2.01517 1-- -0.37676 1 -T i f i i ;: 1 
-0.21846 1 - 3  +0.17611 1 - 7  -0.04696 1--5 . i ; i i  i.’i I ; ! )  

Furthermore, using the same approximations as were used to derive equation (lo), the 
range given by equation (1) is 

so that 

For y o -  1 << 1 

J ( y o )  z 04!056(70 - 

while for y o -  1 >> 1 

J ( y 0 )  5 0*32769./;. 

Under these conditions, equation (12) then yields 

for y o  - 1 << I 

for j’o - 1 >> 1 

0.210 

0.164 

or 

r 0.105 for y o  - 1 << 1 

for y o  - 1 >> 1. 
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Table 1 gives some values of L,(y) for various values of y for aluminium ( Z  = 13) and 
uranium (2 = 92). 

Table 1. Values of L2(y) for various values of y for AI and U 

7-1 LAY), 13 LAY), Z = 92 

0.2 6.78 4.82 
0.5 7.67 5.7 1 
1 8.41 6.45 
2 9.26 7.30 
5 10.52 8.56 

10 11.52 9.56 
20 12.55 10.59 
50 13.92 11.96 

100 14.95 12.99 

The results of table 1, together with equation (14), show that for Z = 92, y = 1.2 (ie 
primary kinetic energy about 100 keV), the value of J ( S ~ ) , ~ / S , ,  is not more than 1.0216, 
corresponding to a range straggling of slightly over 2%) while for the other cases in 
table 1, it is even less. Since path length is the relevant parameter for photon production 
(except for a factor y which varies little if y o  = 1.2 is the primary y), the effect of inelastic 
scattering of electrons on photon production, even when the primary energy is as low 
as 100 keV or even lower, is negligible. 

3. Model for radiative straggling 

In 5 2, we have shown that for primary kinetic energies greater than or equal to 100 keV, 
the effect of straggling due to inelastic scattering on the range is of the order of 2 % or 
less. To estimate the magnitude of radiative straggling, therefore, we assume energy loss 
due to inelastic scattering to be a continuous slowing down process, as in the model of 
Eyges (1 949). Furthermore, as in Eyges (1949), we shall assume the average energy loss 
rate due to inelastic scattering per unit path length, as well as the corresponding quantity 
for bremsstrahlung, and the shape of the bremsstrahlung spectrum (defined by &(U) 
in equation (15) below), to be independent of electron kinetic energy. This assumption 
overestimates radiative straggling, since the effect of inelastic scattering increases and 
that of radiation decreases with decreasing electron energy. (The assumption can be 
removed by a somewhat more refined model not dealt with here.) We can start from 
equation (1) of Eyges (1949), where we assume all sources and fluxes homogeneous and 
isotropic, so that only energy and path length traversed from source enter the problem. 

where E , S  are normalized kinetic energy (ie kinetic energy/mc2) and path length re- 
spectively (written as E ,  t by Eyges), /I is normalized energy loss rate per unit length due to 
inelastic scattering, and &(U) du ds is the probability that in path length ds, an electron 
emits a photon which has a fraction between U and U + du of the electron kinetic energy. 
n(c, s) dc is proportional to the number of electrons with path length s traversed from 
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their source and kinetic energy between e and E +de (p 269 of Rossi and Greisen 1941), 
and normalized so that 

/,,% den(€, 0) = 1. 

Note that n ( ~ ,  s) is not the probability (as stated on p 264 of Eyges 1949) that an electron 
at path length s has energy between E and E + de, since Jt den(€, s) < 1 for s > 0. (In fact, 
this is also pointed out on p 268 of Eyges 1949.) 

If the source electrons are monochromatic of kinetic energy E , , ,  then equation (15) 
is to be solved for s > 0 with the initial condition 

( 1 7 ~ )  n(E, 0) = 6 ( e  - €,,) 

and furthermore 

n(c, s) = 0 for all c > e o  

and 

den(€, s) 

is the probability that the range of an emitted electron will be greater than or  equal to s. 
For &(U), let us take 

& ( U )  = G -+2(1 -o!) i 1 
where 0 6 x < 2. The lower the value of 2, the higher is the contribution of the harder 
photons to the total photon energy production, and the larger is the radiative straggling. 
The ratio 

Si i2  c&(D) dv 3 - 2 
Ski' z;&(z;) dz; 1 + a  

=-- 

may be taken as a measure of the contribution to the energy output of the hard half of 
the spectrum compared to the soft, and has the values 3,1,3 for CI = 0, 1,2 respectively. 
The case CI = 1 corresponds to a bremsstrahlung spectrum of constant photon intensity 
per unit frequency, and will be dealt with in more detail than o! # I .  A somewhat softer 
spectrum (a somewhat greater than 1) is closer to experimental results. Define 

P x = - s  
€0 

e 
7 = -  

€0 

x is a dimensionless path length, defined so that in the absence of bremsstrahlung 
loss, each electron would run from x = 0 to x = 1. Because of the radiative losses, 
different particles have different ranges, corresponding to x values less than 1. o is the 
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ratio of the kinetic energy which an electron of path length x has to what it would have if 
it had suffered no loss by bremsstrahlung. Clearly 0 < r~ < 1. Note that r]  has the 
physical significance of the ratio of average energy loss rate by radiation of a source 
electron to the energy loss rate by inelastic scattering, sinceSA v&(v) dv = G by equation 
(18). Using the ratio of the second to the first term on the righthand side of equation (1) 
for q, with 4(y, Z )  estimated from the Born approximation values given by Heitler (1954, 
pp 251-3) table 2 of approximate q values is obtained 

Table 2. Values of q for various values of y for AI and U 

y - 1  q(2  = 13) q(Z = 92) 
~ 

0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 

0.00236 
0.00478 
0@080 
0.0152 
0.041 1 
0.086 
0.175 
0.435 
0.86 

0.0220 
0.0427 
0.069 
0.128 
0.322 
0.63 
1.22 
2.90 
5.58 

Unlike Eyges (1949), we do not begin with the approximation p = 0 (ie q = CO)  

and then attempt to expand the relevant functions in a power series in s for finite p. 
In fact, it turns out that s = 0 (or x = 0) is a logarithmic branch point of these functions 
(see equation (43a, b)  below) so that an expansion in powers of the path length is not 
possible. (This explains the infinite coefficient of t 3  in M(0, t )  on p 268 of Eyges (1949)) 
Instead, we assume the non-negative variable to be small enough so that a series in 
powers of q is useful with a smalf number of terms. It turns out that for r]  < $, this is 
certainly the case. This will be made quantitative in $4. The coefficients of the first 
few powers of q will be functions of x, some of them with a logarithmic branch point at 
x = 0 (see equation (43a, b) below). 

Define the dimensionless quantity 

??(a, x) = (1 -X)f07r(E, s) (21) 
and its Mellin transform 

g(p, x) = JOm dagP- '??(a, x). 

It is more convenient to work with r~ than with c or z since, in the absence of brems- 
strahlung (q = 0) 

qo, x) = 6( 1 - a) (23) 
for all x, not merely for x = 0. In general, 2(a, x) satisfies 
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with 

and the Mellin transform g(p, x) satisfies 

with 

In equation (25a) 

where Y ( p )  is the logarithmic derivative of the factorial function (Jahnke and Emde 
1938, p 18) and C is Euler's constant, so that cD(0) = 0. @ ( p )  has a pole for each real 
negative integer. Examining equation (25a) suggests that i t  may be useful to define two 
auxiliary functions, T(p ,  x) and its inverse Mellin transform t(0, x), by 

where c can be any positive real number, since J,1 do/cC- ' t (o ,  x)l converges for all real 
positive c. (Note t(o, x) = 0 for o > 1.) Then T(p,  x) satisfies the equation 

with 

T(p,O) = 1. (29b) 

Equation (29a) has an important advantage over equation (25a). The exponential on 
the righthand side of equation (29a) has singularities only for p = 0 and p = 1, while 
on the righthand side of equation (25a) are singularities for every real nonpositive in- 
teger. For q = 0, both equations are easy to solve, with the exact solutions 

g h . 4  = 1 for x < 1 (30fl) 

T ( p , x )  = (1-xy-1. (306) 

(Of course, g(p, x) = 0 for x > 1.) We shall now solve equation (29a) for q positive but 
small, say less than or equal to +. (How large q may be in practice is discussed in 0 4.) For 
this purpose, we note that always 0 < .Y d 1 and 0 d x < 2, so that it is legitimate to 
expand the exponential in equation (29a) in a power series in q, provided that p is not 
close to 0 or 1. We can thus guess a solution for T ( p ,  x) close to the solution equation 
(30b) for Re(p- 1) positive and not too close to zero. In practice, it will be more con- 
venient to work with a differential equation for t(o, x) than with a difference equation for 
T(p,  x), as indicated below. 
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The behaviour of the Mellin transform is such that if the function &(U) ofequation (18) 
were replaced by a slightly different function, say by 

- b(") for 0 < U < uo 

for v o  < U < 1 
@ ( E ;  ?lo) = U 0  

1 0  
then in the half plane Re p < 0, the resulting T(p, x) for uo close to 1 (eg 0.999) would be a 
very different function from our T(p,  x) resulting from &(U) &(U ; 1). But this instability 
of T(p, x) as a functional of 6 ( u  ; uo) does not appear in the Re p > 0 half plane where we 
need T(p, x). Hence, equation (29) may be solved for T(p ,  x) approximately for q positive 
but not too large in the half plane Re p > 0. To compute the average value of the nth 
power of the kinetic energy for fixed x, we require g(1, x) and g(n+ 1, x) (and hence 
T(1, x) and T(n + 1, x)) for that x. To compute range straggling, we require g(1, x) (and 
hence T( 1, x)) as a function of x. 

In equation (29a), assume Re(p - 1) > 0 and Ip - 11, Ip(p - 1)1 sufficiently large so that 
the Taylor series of the exponential converges rapidly (to be made quantitative in 0 4). 
First, consider a = 1 with only the 0th and 1st terms in the Taylor series; then consider 
a = 1 with the Oth, lst, and 2nd terms, and a # 1 with the 0th and 1st terms. 

With a = 1 and only the 0th and 1st terms in the Taylor series for the exponential in 
equation (29a) retained, we get 

with 
T(p,O) = 1. 

This gives for the inverse Mellin transform t(o, x) 

with 
t(a, 0) = 6( 1 -a). 

Equations (33) can easily be solved to give 

t(o, x) = eqx( 1 - x)V( 1 - 0 - x) 

T(p,  x) = eqx(l - x ) q + P - '  

whence 
(34) 

(35) 
which of course reduces to equation (30b) for q = 0. 

is again set equal to 1, then 
If an extra term (the q2 term) is retained in the exponential of equation (29a) and if a 

This gives for the inverse Mellin transform t(o, x) 
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To solve equation (37), use 5 = a + x and x in place of a and x as independent variables. 
Then 

whence 
1 at  qx at q2x2 -+- t -- - 

a2t  

axag 5-x  ax g -xaq  2(5-x)2 (39) 

with the boundary conditions 

t(5,O) = S(5  - 1)  (404 

t (M,x) = 0 for any M > 1 .  (40b) 
This hyperbolic differential equation may be solved iteratively as a Goursat's problem 
(Garabedian 1964, p 117). Consistently neglecting terms of order q3,  it turns out that 

(414 
t(4,x) = ~ ( ~ - l ) e ~ x ( l - x ) v - - U ( l - ~ )  v 2  

2 

where U(x) = 0 for x < 0 and 1 for x > 0. Alternatively 

v 2  t(a, x) = 6(a + x - 1) eqx(l - x)"- U(1- a - x) 
2 a+x-x '  

Hence, from equation (41b) 
a P -  1 

a+x -x '  
T(p,x) = eqx(l-x)V+Q-l-- $ /ox dx'xt2( 1 - x ' ) ~ -  jol -*  do 

where eqx may be replaced by 1 + q x + $ q 2 x 2 ,  since terms of order q3 are neglected. In 
particular 

which gives, if q is put equal to 0 inside the integral 

g(1,x) = T(1, x) 

= eqx( 1 - x ) ~  - h 2 [ ( x  + $x2) In x + G(x) + 8 1 - x) (x + (3  + x) In (1 - x)}] (43b) 
where 

Note that G(0) = 0 and G(l)  = in2  and that G(x) is a monotonic increasing function of 
x on 0 < x < 1. As stated above, the coefficient of q 2  in g(1, x) has a branch point at 
x = 0. However, g(1, x) in equation (43b) does not go to zero as x --* 1. This is because 
putting q = 0 inside the integral of equation (43a) is not legitimate for x near 1. If x is 
near 1, then, neglecting O(q3) 

(44) 
n' 
12 

g( 1, x) = evx( 1 - x ) ~  - -q2( 1 - x)q( 1 + R)  

where the remainder term R goes to zero at least as fast as (1  - x ) ' - ~  as x -+ 1. 
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Going back now to equation (29a) for arbitrary a on (0,2), and taking only the 0th 
and 1st terms in the Taylor series of the exponential, we get 

2(1-u) 
l-p-aqx-- 

ax P 

instead of equation (36). Instead of equation (37), we get 

Again, use 5 = a + x and x as independent variables then 

Inspecting equation (41a), we are led to the ansatz 

t(5,  x )  = S(5 - 1) eqx( 1 - x ) ~  + U(  1 - 5)G(<, x )  

with the boundary condition 

G(5,O) = 0. 

Inserting (48a) into (47) gives, for 0 < x < 5 < 1 

(45) 

Putting 5 = 1 in equation (49) we may solve the resulting ordinary differential equation 
for G( l ,  x), using (48b) for a boundary condition at x = 0, obtaining 

(50) 
X 

G(1,x)  = -2(1-a)qeuqX(1-xx)"~ -+ln(l-x) 
(bX 

Taking 8/35 of equation (49) yields 

which, together with the boundary conditions (48b) and (50), can be solved as a Goursat 
problem. Consistently neglecting terms of order q2 ,  we obtain 

t(5, x )  = S(5 - 1)  eaqx( 1 - x)aq - 2(1- a)? U( 1 - 5 )  eaqx( 1 - x)aq - + In( 1 - x )  

or 

t (a ,x)  = 6(a+x-1)ea~x(l-x)"~-2(1-a)qU(1-a-x)ea~x(l-x)"q - + l n ( l - x )  

X 

( l - x  

X 

( l - x  

(52b) 
whence 

T(p, x )  = eaqx(l -x)"q+P-l 
P 

Since we neglect terms of order q2, eaqx in equation (53) may be replaced by 1 +aqx. 
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In particular 

g(1, x) = T(1, x) = eaqx(l -x)"q[[1-2(1 -a)q{x+(l -x) ln(1 -x)}]. (54) 

4. Results for radiative straggling 

The results of the previous section may be used to compute the moments of the kinetic 
energy for fixed path length x, and more important, to compute the range straggling. 
For these purposes, it is not necessary to invert g ( p , x )  and obtain A(o.x). Instead. 
one can work directly with g(p, x) for suitable p .  

To compute range straggling, note that since, by equation (22), g(1, x) = j"; daic(o, s), 
it follows that: 

and 

Using integration by parts and noting that g(1, 1) = 0 

x,, = g(1, x) dx Io' 
(x'),, = 2 xg(1, X) dx. Jol 

Using equation (54) for g(1, x) and neglecting O(q2) 

x,, = 1 -+q 

(x2),, = 1 -($+&cx)q 

and 

(55,) 

(556) 

(56bI 

(57,) 

(57b) 

(57c) 

The quantity in equation (574 may be taken as a measure of the range straggling. For 
a = 0, it is q/9, for r = 1, it is q/12, and for a = 2, it is q/l8. As expected, the softer the 
spectrum, that is, the higher the value of a, 0 < a d 2, the less straggling there is. 

If it is desired to compute the average value of r~ and a' for fixed x, note that 

Using equations (53) and (27) and neglecting O(q2) 
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= 1+qx(+-~t l ) -~1-a)q{x+(1-x)ln( l -x)) .  ( 5 9 4  

For CI = 1, use equation (43a) and equation (56) to compute range straggling, neglect- 
ing terms of order q3. Then 

The errors involved in the approximations leading to equations ( 5 7 4  and (60d) 
have two sources. One is the replacement of the exponential in equation (29a) by a power 
series. The worst error is that for x = 1 and p = 2, which means eq is replaced by 1 + q  
in equations (57)  and by 1 + q  ++q’ in equations (60). For q = 9, these errors are only 
9 % and 13 % respectively, and even for q = 1, they are 26 % and 8 % respectively. 
Much more serious is the replacement of terms like 1/(1 + q )  by 1 - q  or 1 - q  +q’ in 
subsequent steps where terms of order q2 or q3 have been systematically dropped after 
the differential equations (39) and (51) had been set up. These approximations make it 
impossible to use equations (57) and (60) up to q = 1, and indicate that the solutions 
given here should not be relied upon for q > $. Equation (60d) indicates that for a = 1, 
equation (57d) is subject to a relative error of about $q. When computing range (xav) in 
equation ( 5 7 4  for a = 1, we see by equation (60a) that the relative error in range by 
neglecting O(q2) is only about a?’. Since the error in going from equation (29a) to 
equation (39) or (51) is less than the subsequent error in going from equation (39) to 
equation (60a) from equation (51) to equation (57), it is consistent to keep a higher 
degree in q in solving equation (39) or (51) and in the subsequent steps than has been 
retained in deriving equation (39)  or ( 5 1 ) .  An improvement in equations (60) and (57)  
can thus be obtained without too much trouble. 

Table 2 shows that the present restriction q < $ means an electron kinetic energy 
less than or equal to 4 MeV in uranium and less than or equal to 30 MeV in aluminium. 

It may be argued that, because of the factor y in the second term on the righthand 
side of equation (l), the relative error in photon energy production due to neglect of 
straggling is better approximated by (J(yz)av/yav) - 1 than by ( J ( x ~ ) ~ ~ / x ~ ~ )  - 1 ,  where 

assuming y >> 1 and $ ( y ,  Z )  independent of y. For the case a = 1, with O(q’) neglected, 
we obtain 

as compared with 1/12 from equation (574 or (6Od). In deriving equation (62), it is 
important not to replace e-vx by 1 -qx for gav prematurely, since the terms for (y’),, 
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which would then be changed are not all O(q2). If we assume that both inelastic scattering 
and radiation energy loss rates per unit length are independent of electron energy, then 
range straggling (equations ( 5 7 4 ,  (60d))  is a measure of the error in photon production 
due to straggling neglect. If we assume that both are proportional to electron kinetic 
energy, then equation (62) is a measure of this error. In fact, the second assumption is 
good for radiative loss (if y >> l), but inelastic scattering loss changes little with decreas- 
ing electron energy as long as y >> 1 (see equation (1)). This means that the effective 
q is decreasing as electron energy decreases. Since we use qprimary for our constant v ,  
we do not underestimate the error in total photon production energy in a continuous 
slowing down model. 

5. Relationship of the model to the Spencer-Fano electron energy spectrum 

As a check on the model of 5 3, it can be shown to yield the same qualitative behaviour 
for the electron-slowing down spectrum as a function of kinetic energy as the more 
detailed calculation of that function by Spencer and Fano (1954) Let y ( T )  (where 
T = mc2e) represent this slowing down function or differential track length (dimension : 
length energy- '); S6( To - T) the source strength (dimension : energy- '), S being total 
number of electrons emitted and therefore dimensionless; and k(T, t) d t  the probability 
per unit path length that an electron of energy T experiences an energy loss between r 
and t + d r .  Then, in our model 

k(T, 7) = 

where the first term represents the continuous slowing-down by inelastic scattering and 
the second represents radiative energy loss. Equations (1 3) and (14) of Spencer and Fano 
become for a monochromatic source 

X 

K(T', T )  = j-- M T ' ,  7) dr  

ITm dT'y(T')K(T', T )  = SU(To- T) .  

If we expand 

Y(T) = YO(T)+VY,(T)+ . . . ( 6 5 )  

we obtain at once, with the assumption of an energy independent ,!l 

(66) 
S 

Y o V )  = -U(To- 7-1 P 
and, for a = 1, by iteration in powers of q 

where G(x) is defined by equation (43c). Note that for T < To 
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so that 

- +oo lim - - dY l(T) 
T + T ~  d T  

in accordance with the graphs of curves I11 in figures 1, 2 and 3 of Spencer and Fano 
(1954). Note that no comparison with curve I11 should be made for Tappreciably less 
than $To, since the production of secondary electrons is neglected in our model. The 
existence of a marked minimum in curve I11 in figure 1 of Spencer and Fano ( y ( T )  for 
To = 80mc2, Z = 82) is not reproduced by our equations (65), (66) and (67) since it is a 
high v effect. However, the infinite slope of y,(T) as a function of Tfor T + To from below 
already follows from the coefficient of the first power v in the series of equation (65). 

6. Conclusions 

It has been shown that the neglect of electron straggling, particularly in a computation for 
bremsstrahlung photon production, is a much better assumption than has generally 
been believed, under a fairly wide range of parameters, even for moderately relativistic 
energies. Range straggling due to inelastic scattering is only slightly over 2 % for 100 keV 
electrons in uranium, and goes down as energy goes up or as Z goes down. Range 
straggling due to bremsstrahlung losses was therefore computed considering inelastic 
scattering as a continuous slowing down process. While it is trivial that as v (equation 
(204) goes to zero, radiative range straggling must go to zero, it is a very significant 
result that the range straggling is only v/12 in a model which, in fact, overestimates 
radiative straggling by taking p and v energy independent (at their primary values) 
rather than considering their energy dependence. Equation (1) may be used to give their 
approximate energy dependence, and an expansion in a power series of vprimary can then 
be made, which gives a refinement of the present model just as the second Eyges paper 
on straggling (Eyges 1950) provides a refinement of the first (Eyges 1949). Again, no 
Taylor series expansion in x or path length s about zero is to be made. Furthermore, the 
spectrum of equation (18) can be generalized to 

where G, a, A are all suitable functions of E ,  and a, A give the photon spectrum shape for 
fixed e. Again, one need only consider the Mellin transforms g ( p ,  x) for p = 1, and also for 
p = 2, 3 if (c), (c2) are desired for fixed x, rather than the more complicated %a, x). 

The derivation of equation (62) shows that the error in photon production due to 
straggling neglect is less than the straggling in electron range. The maximum v to which 
equations (57) and (60) are valid is given by the error involved in replacing eq by 1 + v or 
1 + v  +$q2 (see equation (29a) with p = 2, x = l), as well as the errors in subsequent 
steps in the derivation of equations (57) and (60) where, for example, 1/( 1 + v) was re- 
placed by 1 -q or 1 - v  +v2.  The latter step places a lower bound on permissible v 
(or a higher error for fixed v) than that in equation (29a). For v = 9, the range straggling 
is given by v/l2 or 4 % to within a good approximation. However, if the range straggling 
is desired for q = 1, then the transition from equation (29a) to equation (36) is still 
satisfactory within a 10 % error limit, but one must be careful not to expand 1/( I + v) in a 
Taylor series. It is not difficult to replace equation (60d) by an equation which is good 
within a 10% error limit for our model up to v = 1. 
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We have set up a model which can only overestimate range straggling, and which 
gives 3 % range straggling for a fairly hard spectrum r = 1 for q = 4 (equation (60d) with 
q = i). The figure of 3 %  is subject to relative error conservatively estimated at q z  (ie 
25 %) within the framework of the overestimating model. 

Hence, for q < i, that is, primary electron energies less than or equal to 4 MeV in 
uranium or less than or equal to 30 MeV in aluminium, bremsstrahlung may be considered 
as a continuous slowing down process, with an error of at most 4 % in range straggling 
and in photon energy production. This justifies the use of a continuous slowing down 
treatment for electron transport in computations of photon production by Brown (1965), 
Brown et a1 (1969), and by Ehrman and dePackh (1969, unpublished computer program 
‘Electrex’). 

It should be noted that for a primary electron kinetic energy as low as 100 keV, the 
production of photons by K fluorescence from discrete levels is not negligible compared 
to bremsstrahlung. For low Z ,  direct fluorescence is more important than indirect 
fluorescence; for high 2, the reverse is the case. Also, as shown in 0 2, for primary energies 
below 100 keV, range straggling due to inelastic scattering rises above 2 %. 
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